

https://doi.org/10.69758/GIMRJ/2505I5VXIIIP0058

TWO FLUID COSMOIOGICAL MODEL IN BIANCHI V_0 IN SCALE COVARIANT THEORY OF GRAVITIATION

Dr. Vandana Madhukarrao Umarkar

Department of Mathematics, SGBAU Amravati.

ABSTRACT

The present paper deals with Bianchi type V two fluids cosmological model in scale Covariant theory of gravitation. Matter fluid modeling observed matter and radiating Fluid modeling cosmic microwave background radiation taken as source. Exact solutions Of the field equations are obtained. Both interacting and non-interacting cases of two fluids are investigated. The exact solutions are obtained for constraints $X_1 = X_2 = X_3 = 0$. The Energy densities are positive for positive value of parametric constant α in case of exponential model. Energy transfer from matter to radiation is observed in case of interacting fluid. Some physical parameter of the obtained model is discussed in detail. Keywords: Two fluid, Bianchi type V_0 , scale covariant theory.

1. INTRODUCTION

Cosmology is the study of the universe as a whole. The general theory of relativity provides basic tools for constructing cosmological models of the universe. It is generally acclaimed as a mathematically precise and physically sound theory of gravitation. However, in recent years, there has been a lot of interest in several alternative theories of gravitation. Brans-Dicke (BD) theory [1] is one of the noteworthy among the various modification of general relativity. BD theory introduces a dynamical scalar to account for variable gravitational constant G. Nordtvedt [2] proposed a general class of field scalar-tensor theories in which the parameter w of the BD theory is allowed to be an arbitrary function of the scalar field. In SaezBallester's theory [3] metric is coupled with dimensionless scalar field. Like BD theory, there is another viable alternative to general relativity which admits a variable G proposed by Canuto et al.[4]. The cosmological constant appears as avariable parameter in the framework of scale covariant theory. In scale covariant theory, Einstein's field equations are valid in gravitational units, whereas physical quantities are measured in the atomic units. The metric tensors in the two systems of units are related by a conformal transformation $gij = \varphi^2(xk)gij(1)$ where a bar denotes gravitational units and unbarred denotes atomic units. An important feature of this theory is that no independent equation for Dexists. Beesham [5], Venkateswarlu [6], Reddy et al. [7], Ram et al.[8], Zeyanddin and Saha [9], Katore et al.[10] are some of the authors who have investigated several aspects of the scale covariant theory of gravitation. Two fluid models, includingenergy densities of radiation and matter, are cosmologically important. Cosmological observations suggest that the radiation frame and the matter frame of the universe may not coincide [11]. The radiating fluid is modeling cosmic microwave background. The matter-fluid modeling the observed matter content of the universe. Recently, researchers have beentaking keen interest in two fluids cosmological models. Amirhashchi et al.[12] have evaluated interacting two-fluid dark energy models inanon-flat universe. Khalatnikovet al. [13] have studied the quasi-isotropic expansion for a simple two-fluid cosmological models, including radiation and string gas. Coley and Dunn [14] have investigated the two fluids source of Bianchi type VI0 models. Pant and Oli [15] have examined the Bianchi type II space-time with a two-fluid cosmological model The paper is organized as follows: section 2 contains metric and field equations. Section 3 is devoted to solutions for non-interacting cases of fluids. In section 4, we present solutions in case of fluid interaction. In section 5, we conclude our obtained results.

🖉 e-ISSN No. 2394-8426

Gurukul International Multidisciplinary Research Journal (GIMRJ)*with* International Impact Factor 8.357 Peer Reviewed Journal

Monthly Issue MAY-2025 Sue–V. Volume–XIII

https://doi.org	g/10.69758	8/GIMRJ/2	250515VXI	IIP0058	Is	ssue-V,	Volur	ne-XII
2. Metric and f We consider th $ds^2 = dt^2 - A^2 d$ Where the met	The Binchi transformed Binchi t	ype V_0 metri $m^x dy^2 - C^2 e$ ons A,B,C t	^{-2mx} dz ² functions of	t only and 1	m is constar	ıt.		(2)
The field equat				•				
R_i^j	-	$\frac{1}{2}$	R_j^l	+	$f_j^\iota(\emptyset)$		=	-8π GT _j
(3)		1						
Where , \emptyset is fundamental formula $\phi^2 = -2\phi\phi$.		-	k aka)					()
	,	,			have their u	gial meanin	ac.	(4
as in Riemannia							-	
	T _{ii}	=	gy moment	$(T^m)_{ij}$			+($T^r)_i$
(5)	- 13			(-)(j			(- 71
Where, $(T^m)_{ij}$	Is the end	ergy momer	ntum tensor	for matter f	ield and (7	' ^r) _{ii} radiati	ion	
Field which is g						,		
$(T^m)_{ij}$		=		$(p_m +)$	ρ_{m}	u_i^m	u_j^1	$m - p_m g_i$
(6)							-	
$(T^r)_{ij} = \frac{4}{3}\mu$	$o_r u_i^r u_i^r -$	$\frac{1}{2}\rho_r g_{ii}$						
(7)		2,						
From the CMI	B is interac	ting phases	s matter obe	eys the equa	tion of state	. The intera	ctive	
		• •		• •)
From the CMI	s the pre-re	ecombination	n era where	e the photon	is were bou	und to te n	natter(21)	
From the CMI Phase describes Where, ρ_m is th of radiation with	s the pre-re e energy de h	ecombination	n era where	e the photon	is were bou	und to te n	natter(21)	
From the CMI Phase describes Where, ρ_m is th	s the pre-re e energy de h	ecombination	n era where	e the photon	is were bou	and to te matrix to te matrix ρ_r	natter(21)	ergy densit
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^n$ (8)	s the pre-re e energy do h ⁿ u ^m _i	ecombination ensity of material =1	n era where tter , p_m is th	e the photon ne pressure and	ns were bou of the matt	and to te mater and ρ_r g^i	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$	ergy densit
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^m$ (8) We assume that	the pre-rest the pre-rest energy do u_i^m the matter	ecombination ensity of mar =1 and radiatio	n era where tter , p_m is th n are both c	e the photon ne pressure and	ns were bou of the matt	and to te mater and ρ_r g^i	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$	ergy densit
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^n$ (8) We assume that $u_i^m =$	s the pre-re- e energy den u_i^m the matter (0,0,0,1),	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$	n era where tter , p_m is th n are both c ,1)	e the photon ne pressure and commoving	ns were bou of the matt	and to te matrix for and ρ_r g^i with the state $(T^m)_i$	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$	ergy densit
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^n$ (8) We assume that $u_i^m =$ Using equation	the matter (0,0,0,1), (1),(2),(3)	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$ and (8) the	n era where tter p_m is the n are both c p_1 field equa	e the photon ne pressure and commoving ations of the	s were bou of the matt which imply scale covar	and to te m there and ρ_r g^i g^i that $(T^m)_i$ iant can be	natter(21) is the end ^j u ^r _i u ^r _j j written a	ergy densit
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^m$ (8) We assume that $u_i^m =$ Using equation $\frac{\ddot{B}}{B} + \frac{\ddot{C}}{C} + \frac{\dot{B}}{B}\frac{\dot{C}}{C}$	the matter (0,0,0,1), (1),(2),(3)	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$ and (8) the	n era where tter p_m is the n are both c p_1 field equa	e the photon ne pressure and commoving ations of the	s were bou of the matt which imply scale covar	and to te m there and ρ_r g^i g^i that $(T^m)_i$ iant can be	natter(21) is the end ^j u ^r _i u ^r _j j written a	ergy densit
From the CMI Phase describes Where, ρ_m is the of radiation with $g^{ij}u_i^m$ (8) We assume that $u_i^m =$ Using equation $\frac{\ddot{B}}{B} + \frac{\ddot{C}}{c} + \frac{\dot{B}}{B}\frac{\dot{C}}{c}$ (9) $\frac{\ddot{A}}{A} + \frac{\ddot{C}}{c} + \frac{\dot{A}}{A}\frac{\dot{C}}{c}$	s the pre-re- e energy den ${}^{a}u_{i}^{m}$ the matter (0,0,0,1), (1),(2),(3) $+ \frac{\dot{A}\dot{\varphi}}{A\varphi}$	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$ and (8) the $-\frac{\dot{B}}{B}\frac{\dot{\varphi}}{\varphi} -$	n era where tter , p_m is the n are both c ,1) e field equa $\frac{\dot{c}}{c}\frac{\dot{\varphi}}{\varphi}$ -	tions of the $\frac{\ddot{\varphi}}{\varphi}$ + (which imply scale covar $\frac{\varphi}{\varphi}^2 - \frac{\pi}{2}$	and to te m there and ρ_r g^i g^i that $(T^m)_i$ iant can be $\frac{n^2}{4^2}$	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$ j written a = $-8\pi G(1)$	s $p_m + \frac{1}{3} \rho_r$
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^m$ (8) We assume that $u_i^m =$ Using equation $\frac{\ddot{B}}{B} + \frac{\ddot{C}}{c} + \frac{\dot{B}}{B}\frac{\dot{C}}{c}$ (9) $\frac{\ddot{A}}{A} + \frac{\ddot{C}}{c} + \frac{\dot{A}}{A}\frac{\dot{C}}{c}$ (10)	s the pre-re- e energy den ${}^{n}u_{i}^{m}$ the matter (0,0,0,1), (1),(2),(3) $+ \frac{\dot{A}\dot{\varphi}}{A\varphi} - \frac{\dot{A}\dot{\varphi}}{A\varphi}$	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$ and (8) the $\frac{\dot{B}}{B}\frac{\dot{\varphi}}{\varphi} - \frac{\dot{B}}{B}\frac{\dot{\varphi}}{\varphi}$ $+ \frac{\dot{B}}{B}\frac{\dot{q}}{\varphi}$	n era where tter , p_m is the n are both c (1) field equal $\frac{\dot{c}}{c}\frac{\dot{\varphi}}{\varphi}$ - $\frac{\dot{c}}{c}\frac{\dot{\varphi}}{\varphi}$	tions of the $\frac{\ddot{\varphi}}{\varphi} + ($	which imply scale covar $\frac{\varphi}{\varphi})^2 - \frac{\pi}{2}$ + $(\frac{\dot{\varphi}}{\varphi})^2$ -	and to te m for and ρ_r g^i	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$ j written a = $-8\pi G(1)$	s $p_m + \frac{1}{3} \rho_r$
From the CMI Phase describes Where, ρ_m is the of radiation with $g^{ij}u_i^m$ (8) We assume that $u_i^m =$ Using equation $\frac{\ddot{B}}{B} + \frac{\ddot{C}}{C} + \frac{\dot{B}}{B}\frac{\dot{C}}{C}$ (9) $\frac{\ddot{A}}{A} + \frac{\ddot{C}}{C} + \frac{\dot{A}}{A}\frac{\dot{C}}{C}$	s the pre-re- e energy den ${}^{n}u_{i}^{m}$ the matter (0,0,0,1), (1),(2),(3) $+ \frac{\dot{A}\dot{\varphi}}{A\varphi} - \frac{\dot{A}\dot{\varphi}}{A\varphi}$	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$ and (8) the $\frac{\dot{B}}{B}\frac{\dot{\varphi}}{\varphi} - \frac{\dot{B}}{B}\frac{\dot{\varphi}}{\varphi}$ $+ \frac{\dot{B}}{B}\frac{\dot{q}}{\varphi}$	n era where tter , p_m is the n are both c (1) field equa $\frac{\dot{c}}{c}\frac{\dot{\varphi}}{\varphi}$ - $\frac{\dot{c}}{c}\frac{\dot{\varphi}}{\varphi}$	tions of the $\frac{\ddot{\varphi}}{\varphi} + ($	which imply scale covar $\frac{\varphi}{\varphi})^2 - \frac{\pi}{2}$ + $(\frac{\dot{\varphi}}{\varphi})^2$ -	and to te m for and ρ_r g^i	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$ j written a = $-8\pi G(1)$	s $p_m + \frac{1}{3} \rho_r$
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^m$ (8) We assume that $u_i^m =$ Using equation $\frac{\ddot{B}}{B} + \frac{\ddot{C}}{C} + \frac{\dot{B}}{B}\frac{\dot{C}}{C}$ (9) $\frac{\ddot{A}}{A} + \frac{\ddot{C}}{C} + \frac{\dot{A}}{A}\frac{\dot{C}}{C}$ (10) $\frac{\ddot{B}}{B} + \frac{\ddot{A}}{A} + \frac{\dot{A}}{A}\frac{\dot{B}}{B} - \frac{\dot{A}}{A}$	is the pre-re- e energy den- in u_i^m the matter (0,0,0,1); (1),(2),(3) $+ \frac{\dot{A}\dot{\phi}}{\dot{A}\phi} - \frac{\dot{A}\dot{\phi}}{\dot{A}\phi}$ $\frac{\dot{\phi}}{\phi} - \frac{\dot{B}\dot{\phi}}{B\phi} + \frac{\dot{A}\dot{\phi}}{\dot{A}\phi} - \frac{\dot{B}\dot{\phi}}{B\phi}$	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$ and (8) the $-\frac{\dot{B}}{B}\frac{\dot{\varphi}}{\varphi} -$ $\frac{\dot{B}}{\phi} + \frac{\dot{B}}{B}\frac{\dot{q}}{\varphi}$ $-\frac{\dot{c}}{c}\frac{\dot{\varphi}}{\varphi} - \frac{\ddot{\varphi}}{\varphi} +$	n era where tter , p_m is the n are both c (1) i field equal $\frac{\dot{c}}{c}\frac{\dot{\phi}}{\varphi}$ - $\frac{\dot{c}}{c}\frac{\dot{\phi}}{\varphi}$ - $(\frac{\dot{\phi}}{\varphi})^2 - \frac{m^2}{A^2}$	e the photon ne pressure and commoving v ations of the $\frac{\ddot{\varphi}}{\varphi}$ + ($-\frac{\ddot{\varphi}}{\varphi}$ = $-8\pi G$ (p	is were bound of the mathemathemathemathemathemathemathemathe	and to te m for and ρ_r g^i	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$ j written a = $-8\pi G(1)$	ergy densit $=$ s $p_m + \frac{1}{3} \rho_r$ $p_m + \frac{1}{3} \rho_r$ (11)
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^m$ (8) We assume that $u_i^m =$ Using equation $\frac{\ddot{B}}{B} + \frac{\ddot{C}}{C} + \frac{\dot{B}}{C}\frac{\dot{C}}{C}$ (9) $\frac{\ddot{A}}{A} + \frac{\ddot{C}}{C} + \frac{\dot{A}}{A}\frac{\dot{C}}{C}$ (10) $\frac{\ddot{B}}{B} + \frac{\ddot{A}}{A} + \frac{\dot{A}}{A}\frac{\dot{B}}{B} - \frac{\dot{A}}{A}$ $\frac{\dot{A}}{B}B} + \frac{\dot{A}}{A}\frac{\dot{C}}{C} + \frac{\dot{B}}{B}\frac{\dot{C}}{C} - \frac{\dot{B}}{B} + \frac{\dot{C}}{C} = 2$	is the pre-re- e energy den- in u_i^m the matter (0,0,0,1); (1),(2),(3) $+ \frac{\dot{A}\dot{\phi}}{\dot{A}\phi} - \frac{\dot{A}\dot{\phi}}{\dot{A}\phi}$ $\frac{\dot{\phi}}{\phi} - \frac{\dot{B}\dot{\phi}}{B\phi} + \frac{\dot{A}\dot{\phi}}{\dot{A}\phi} - \frac{\dot{B}\dot{\phi}}{B\phi}$	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$ and (8) the $-\frac{\dot{B}}{B}\frac{\dot{\varphi}}{\varphi} -$ $\frac{\dot{B}}{\phi} + \frac{\dot{B}}{B}\frac{\dot{q}}{\varphi}$ $-\frac{\dot{c}}{c}\frac{\dot{\varphi}}{\varphi} - \frac{\ddot{\varphi}}{\varphi} +$	n era where tter , p_m is the n are both c (1) i field equal $\frac{\dot{c}}{c}\frac{\dot{\phi}}{\varphi}$ - $\frac{\dot{c}}{c}\frac{\dot{\phi}}{\varphi}$ - $(\frac{\dot{\phi}}{\varphi})^2 - \frac{m^2}{A^2}$	e the photon ne pressure and commoving v ations of the $\frac{\ddot{\varphi}}{\varphi}$ + ($-\frac{\ddot{\varphi}}{\varphi}$ = $-8\pi G$ (p	is were bound of the mathemathemathemathemathemathemathemathe	and to te m for and ρ_r g^i	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$ j written a = $-8\pi G(1)$	ergy densit $=$ s $p_m + \frac{1}{3}\rho_n$ $p_m + \frac{1}{3}\rho_r$ (11)
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^m$ (8) We assume that $u_i^m =$ Using equation $\frac{\ddot{B}}{B} + \frac{\ddot{C}}{C} + \frac{\dot{B}\dot{C}}{B}\frac{\dot{C}}{C}$ (9) $\frac{\ddot{A}}{A} + \frac{\ddot{C}}{C} + \frac{\dot{A}\dot{B}}{B} - \frac{\dot{A}}{A}\frac{\dot{C}}{C}$ (10) $\frac{\ddot{B}}{B} + \frac{\ddot{A}}{A} + \frac{\dot{A}\dot{B}}{A} - \frac{\dot{A}}{A}\frac{\dot{A}}{C}$ $\frac{\dot{A}\dot{B}}{B} + \frac{\dot{A}\dot{C}}{A} - \frac{\dot{B}\dot{B}}{B} - \frac{\dot{A}}{A}\frac{\dot{C}}{C} = 2$ (13)	is the pre-re- e energy den- in u_i^m the matter (0,0,0,1); (1),(2),(3) $+ \frac{\dot{A}\dot{\phi}}{\dot{A}\phi} - \frac{\dot{A}\dot{\phi}}{\dot{A}\phi}$ $\frac{\dot{\phi}}{\phi} - \frac{\dot{B}\dot{\phi}}{B\phi} + \frac{\dot{A}\dot{\phi}}{\dot{A}\phi} - \frac{\dot{B}\dot{\phi}}{B\phi}$	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$ and (8) the $-\frac{\dot{B}}{B}\frac{\dot{\varphi}}{\varphi} -$ $\frac{\dot{B}}{\phi} + \frac{\dot{B}}{B}\frac{\dot{q}}{\varphi}$ $-\frac{\dot{c}}{c}\frac{\dot{\varphi}}{\varphi} - \frac{\ddot{\varphi}}{\varphi} +$	n era where tter , p_m is the n are both c (1) i field equal $\frac{\dot{c}}{c}\frac{\dot{\phi}}{\varphi}$ - $\frac{\dot{c}}{c}\frac{\dot{\phi}}{\varphi}$ - $(\frac{\dot{\phi}}{\varphi})^2 - \frac{m^2}{A^2}$	e the photon ne pressure and commoving v ations of the $\frac{\ddot{\varphi}}{\varphi}$ + ($-\frac{\ddot{\varphi}}{\varphi}$ = $-8\pi G$ (p	is were bound of the mathemathemathemathemathemathemathemathe	and to te m for and ρ_r g^i	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$ j written a = $-8\pi G(1)$	ergy densit $=$ s $p_m + \frac{1}{3}\rho_n$ $p_m + \frac{1}{3}\rho_r$ (11)
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^m$ (8) We assume that $u_i^m =$ Using equation $\frac{\ddot{B}}{B} + \frac{\ddot{C}}{C} + \frac{\dot{B}}{B}\frac{\dot{C}}{C}$ (9) $\frac{\ddot{A}}{A} + \frac{\ddot{C}}{C} + \frac{\dot{A}}{A}\frac{\dot{C}}{C}$ (10) $\frac{\ddot{B}}{B} + \frac{\ddot{A}}{A} + \frac{\dot{A}}{A}\frac{\dot{B}}{B} - \frac{\dot{A}}{A}$	is the pre-re- e energy den- in u_i^m the matter (0,0,0,1); (1),(2),(3) $+ \frac{\dot{A}\dot{\phi}}{\dot{A}\phi} - \frac{\dot{A}\dot{\phi}}{\dot{A}\phi}$ $\frac{\dot{\phi}}{\phi} - \frac{\dot{B}\dot{\phi}}{B\phi} + \frac{\dot{A}\dot{\phi}}{\dot{A}\phi} - \frac{\dot{B}\dot{\phi}}{B\phi}$	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$ and (8) the $-\frac{\dot{B}}{B}\frac{\dot{\varphi}}{\varphi} -$ $\frac{\dot{B}}{\phi} + \frac{\dot{B}}{B}\frac{\dot{q}}{\varphi}$ $-\frac{\dot{c}}{c}\frac{\dot{\varphi}}{\varphi} - \frac{\ddot{\varphi}}{\varphi} +$	n era where tter , p_m is the n are both c (1) i field equal $\frac{\dot{c}}{c}\frac{\dot{\phi}}{\varphi}$ - $\frac{\dot{c}}{c}\frac{\dot{\phi}}{\varphi}$ - $(\frac{\dot{\phi}}{\varphi})^2 - \frac{m^2}{A^2}$	e the photon ne pressure and commoving v ations of the $\frac{\ddot{\varphi}}{\varphi}$ + ($-\frac{\ddot{\varphi}}{\varphi}$ = $-8\pi G$ (p	is were bound of the mathemathemathemathemathemathemathemathe	and to te m for and ρ_r g^i	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$ j written a = $-8\pi G(1)$	ergy densit $=$ s $p_m + \frac{1}{3}\rho_r$ $\rho_m + \frac{1}{3}\rho_r$ (11)
From the CMI Phase describes Where, ρ_m is th of radiation with $g^{ij}u_i^m$ (8) We assume that $u_i^m =$ Using equation $\frac{\ddot{B}}{B} + \frac{\ddot{C}}{C} + \frac{\dot{B}}{B}\frac{\dot{C}}{C}$ (9) $\frac{\ddot{A}}{A} + \frac{\ddot{C}}{C} + \frac{\dot{A}}{A}\frac{\dot{C}}{C}$ (10) $\frac{\ddot{B}}{B} + \frac{\ddot{A}}{A} + \frac{\dot{A}}{A}\frac{\dot{B}}{B} - \frac{\dot{A}}{A}\frac{\dot{A}}{C}$ (10) $\frac{\ddot{B}}{B} + \frac{\ddot{A}}{A} + \frac{\dot{A}}{A}\frac{\dot{B}}{B} - \frac{\dot{A}}{A}\frac{\dot{C}}{C}$ (13) $A^2 = BC$	is the pre-re- e energy den- in u_i^m the matter (0,0,0,1); (1),(2),(3) $+ \frac{\dot{A}\dot{\phi}}{A\phi} - $	ecombination ensity of matrix =1 and radiatio $u_i^r = (0,0,0)$ and (8) the $-\frac{\dot{B}}{B}\frac{\dot{\varphi}}{\varphi} -$ $-\frac{\dot{C}}{c}\frac{\dot{\varphi}}{\varphi} - \frac{\ddot{\varphi}}{\varphi} +$ $-\frac{\dot{C}}{c}\frac{\dot{\varphi}}{\varphi} + \frac{\ddot{\varphi}}{\varphi} - (\dot{\varphi})$	n era where tter , p_m is the n are both c (1) i field equal $\frac{\dot{c}}{c}\frac{\dot{\phi}}{\varphi}$ - $\frac{\dot{c}}{c}\frac{\dot{\phi}}{\varphi}$ - $(\frac{\dot{\phi}}{\varphi})^2 - \frac{m^2}{A^2}$ $(\frac{\dot{\phi}}{\varphi})^2 - 3\frac{m}{A^2}$	the photon and commoving v ations of the $\frac{\ddot{\varphi}}{\varphi}$ + ($-\frac{\ddot{\varphi}}{\varphi}$ $=-8\pi G (p)$	is were bound of the mathemathemathemathemathemathemathemathe	and to te m for and ρ_r g^i	natter(21) is the end ${}^{j}u_{i}^{r}u_{j}^{r}$ j written a = $-8\pi G(1)$	ergy densit = s $p_m + \frac{1}{3}\rho_r$ $\rho_m + \frac{1}{3}\rho_r$

Gurukul International Multidisciplinary Research Journal (GIMRJ)*with* International Impact Factor 8.357 Peer Reviewed Journal

e-ISSN No. 2394-8426

Monthly Issue

Peer Reviewed Journal				MAY	-2025				
https://doi.org/10.69758/GIMRJ/250515VXIIIP0058 Issue-V, Volume-XIII									
3. Metric –Interacting Model: -									
Using equations(9) and (10) we obtain \ddot{a}		Ď			i io				
$\frac{\ddot{A}}{A} - \frac{\ddot{B}}{B} +$	$\left(\frac{\dot{A}}{A}-\frac{\dot{B}}{B}\right)\frac{\dot{C}}{C}$	$+2(\frac{B}{B})$	-		$\frac{A}{A}\frac{\varphi}{\omega}=0$				
(15)					7				
Equation(13) further reduces to									
$\frac{d}{dt}\left(\frac{\dot{A}}{A}-\frac{\dot{B}}{B}\right)+\left(\frac{\dot{A}}{A}-\frac{\dot{B}}{B}\right)\left(\frac{\dot{A}}{A}+\frac{\dot{B}}{B}+\frac{\dot{C}}{C}\right)$	$-2\frac{\dot{\varphi}}{\varphi}$	$(\frac{\dot{A}}{A})$	$-\frac{\dot{B}}{B}$)	=0				
(16)									
Let	V=				a ³				
(17)									
Making the use of equation(15) in equ	ation(14), we yield								
$\frac{d}{dt} \qquad \left(\frac{\dot{A}}{A} \qquad - \qquad \frac{\dot{B}}{B}\right)$		$\left(\frac{\dot{A}}{A} - \frac{\dot{B}}{B}\right) \left(2\frac{\dot{\varphi}}{\varphi}\right)$		- <u>i</u>	,)				
(18)									
Integrating equation (16), we get									
$\left(\frac{\dot{A}}{A}\right)$	-	$\frac{\dot{B}}{B}$)		$=\frac{X\varphi^2}{V}$				
(19)		В	,		V				
Equation (17) further reduce to									
$\frac{A}{B} = d_1 \exp(x_1 \int \frac{\varphi^2}{V} dt)$									
(20)									
$\frac{A}{C} = d_2 \exp\left(x_2 \int \frac{\varphi^2}{V} dt\right)$									
(21)									
$\frac{B}{c} = d_3 \exp(x_3 \int \frac{\varphi^2}{V} dt))$									
(22)									

Where d_i (i=1,2,3) and x_i (i=1,2,3) satisfy the relation $d_1, d_2, d_3, x_1, x_2, x_3$ are constant which satisfy the condition.

By using equation (14) and in equation (20),(21),(22) we get

 $A = V^{\frac{1}{3}}$

(23)

12

$$B = D V^{\frac{1}{3}} \exp(X \int \frac{\varphi^2}{v} dt)$$

(24)

$$C = DV^{\frac{1}{3}}(X\int \frac{\varphi^2}{V} dt)$$

(25)

Where D, X are integration constant.

By power law, here we take $V = a t^b$

(26)

a,b are constant.

The gravitational term G is to be time dependent. We establish that G is decreasing of time However the possibility of increasing the function of time cannot be neglated. We assume the most simple and useful form of G as

Gurukul International Multidisciplinary Research Journal (GIMRJ)*with* International Impact Factor 8.357 Peer Reviewed Journal

e-ISSN No. 2394-8426

Monthly Issue MAY-2025 Issue-V, Volume-XIII

https://doi.org/10.69758/GIMRJ/2505I5VXIIIP0058 $G = \alpha t$ (27)Where, α is the proportionality constant. We consider the scale function as $\phi(t) = (\frac{t_0}{t})^{\epsilon}$, $\epsilon = \pm 1$, $\pm \frac{1}{2}$ (28)Where t_0 is constant. $A = a^{\frac{1}{3}}b^{\frac{1}{3}}$ (29) $B = D a^{\frac{1}{3}} t^{\frac{b}{3}} \exp\left(\frac{X}{a} \frac{t^{-b+3}}{-b+3}\right)$ (30) $C = Da^{\frac{1}{3}}t^{\frac{b}{3}}\exp\left(-\frac{x}{a}\frac{t^{-b+3}}{(-b+3)}\right)$ (31) $ds^{2} = dt^{2} - a^{\frac{1}{3}}b^{\frac{1}{3}}dx^{2} - D a^{\frac{1}{3}}t^{\frac{b}{3}}\exp\left(\frac{x}{a}\frac{t^{-b+3}}{-b+3}\right) e^{-2mx} dy^{2} -$ $Da^{\frac{1}{3}}t^{\frac{b}{3}}\exp\left(-\frac{x}{a}\frac{t^{-b+3}}{(-b+3)}\right)e^{-2mx}dz^{2}$ (32)

3. Physical and Kinematical properties :

We assume the relation between pressure and density of matter find through the

"gamma-law" equation of state which is given by

3.1 Matter Density:-

$$\rho_m = \frac{2b^2 - 3b - 2bt}{6\pi\alpha(4 - 3\gamma)t^3} + \frac{4exp\ t^{-b+2}(b-3t)}{12\pi\alpha(4 - 3\gamma)t^2} - \frac{3m^2}{4\pi\alpha(4 - 3\gamma)at^{1+b}}$$
(33)

3.2 Radiation Density:

$$\rho_r = \frac{b^2 - 3b - 9}{at^2} - \frac{3m^2}{at^b} - \frac{2exp \ t^{(-b+2)}}{-b+3} - \frac{b^2 - 3b - 2bt}{3 \ \pi \alpha (4-3\gamma)t^3} - \frac{2exp \ t^{(-b+2)} \ (b-3t)}{(4-3\gamma)t^2(-b+3)}$$

(34)

$$+ \frac{3m^2}{2\pi\alpha a(4-3\gamma)t^{1+b}}$$

3.3 Matter Density Parmeter:

$$\Omega_{m=\frac{\rho_m}{3H^2}=\frac{9t^2}{b^2}\left[\frac{b^2-3b-2bt}{6\pi\alpha(4-3\gamma)t^3}+\frac{2\exp^{(-b+2)}(b-3t)}{12\pi\alpha(4-3\gamma)t^2}-\frac{3m^2}{8\pi\alpha(4-3\gamma)^{1+b}}\right]}$$
(35)

$$\Omega_{r=\frac{\rho_{r}}{3H^{2}}=\frac{9t^{2}}{b^{2}}\left[\frac{b^{2}-3b-9}{at^{2}}-\frac{3m^{2}}{at^{b}}-\frac{2\exp t^{(-b+2)}}{-b+3}-\frac{b^{2}-3b-2bt}{4\pi\alpha(4-3\gamma)}-\frac{2\exp t^{(-b+2)}(b-3t)}{(4-3\gamma)t^{2}(-b+3)}-+\frac{3m^{2}}{2\pi\alpha(4-3\gamma)}t^{1+b}\right]}$$
(36)

3.4 Radition Density parmeter

$$\Omega = \Omega_m + \Omega_r = \frac{18t^2}{b^2} \left\{ \frac{b^2 - 3b - 2bt}{6\pi\alpha(4 - 3\gamma)t^3} + \frac{2 \exp^{t^{(-b+2)}(b-3t)}}{12\pi\alpha(4 - 3\gamma)t^2} - \frac{3m^2}{8\pi\alpha(4 - 3\gamma)^{1+b}} + \frac{b^2 - 3b - 9}{at^2} - \frac{3m^2}{at^b} - \frac{2 \exp^{t^{(-b+2)}(b-3t)}}{b^2 - b^2 - 3b - 2bt} - \frac{2 \exp^{t^{(-b+2)}(b-3t)}}{(4 - 3\gamma)t^2(-b+3)} - \frac{3m^2}{2\pi\alpha(4 - 3\gamma)t^{1+b}} \right\}$$
(37)
3.4 Case I: Dust Model

In order to investigate the physical behavior of the fluid parameters we consider the Particular case of dust ,when $\gamma = 0$. *The* hubble parameter, exapansion scalar, deceleration Parmeter, anisotropic parameter, shear scalar are given by

$$H = \frac{b}{3t}$$

$$\theta = \frac{b}{t}$$
(38)
(39)
$$q = \frac{d}{dt}\frac{b}{3t} - 1$$
(40)

Page 356

Gurukul International Multidisciplinary Research Journal (GIMRJ)*with* International Impact Factor 8.357 Peer Reviewed Journal

e-ISSN No. 2394-8426

Monthly Issue MAY-2025 Issue–V, Volume–XIII

https://doi.org/10.69758/GIMRJ/2505I5VXIIIP0058

$$q = -\frac{b}{3t^{2}} - 1$$
(41)
$$\sigma^{2} = \frac{1}{2} \frac{b^{2}}{a^{2}t^{2}}$$
(42)
$$A_{m} = \frac{t^{2}}{a^{2}} \frac{X^{2}}{b^{2}t^{2}}$$
(43)

The energy density and density parameters are

$$\rho_m = \frac{2b^2 - 3b - 2bt}{24\pi a t^3} + \frac{4exp t^{-b+2}(b-3t)}{48\pi a t^2} - \frac{3m^2}{16\pi a t^{1+b}}$$

$$(44)$$

$$\rho_m = \frac{b^2 - 3b - 9}{24\pi a t^3} + \frac{4exp t^{-b+2}(b-3t)}{48\pi a t^2} - \frac{3m^2}{16\pi a t^{1+b}} + \frac{3m^2}{16\pi a t^{1+b}}$$

$$\rho_r = \frac{1}{at^2} - \frac{1}{at^b} - \frac{1}{-b+3} - \frac{1}{12\pi at^3} - \frac{1}{48\pi at^2(-b+3)} + \frac{3m^2}{16\pi at^{1+b}}$$
(45)

$$\Omega_{m=\frac{\rho_m}{3H^2}=\frac{9t^2}{b^2}\left[\frac{b^2-3b-2bt}{24\pi\alpha t^3}+\frac{2\exp((-b+2)(b-3t)}{48\pi\alpha t^2}-\frac{3m^2}{32\pi\alpha t^{1+b}}\right]}$$
(46)

$$\Omega_{r=\frac{\rho_{r}}{3H^{2}}=\frac{9t^{2}}{b^{2}}\left[\frac{b^{2}-3b-9}{at^{2}}-\frac{3m^{2}}{at^{b}}-\frac{2\exp t^{(-b+2)}}{-b+3}-\frac{b^{2}-3b-2bt}{4\pi\alpha}-\frac{\exp t^{(-b+2)}(b-3t)}{2t^{2}(-b+3)}-\frac{3m^{2}}{8\pi\alpha t^{1+b}}\right]$$

$$\Omega=\Omega_{m}+\Omega_{r}=\frac{18t^{2}}{b^{2}}\left\{\frac{b^{2}-3b-2bt}{24\pi\alpha t^{3}}+\frac{2\exp t^{(-b+2)}(b-3t)}{48\pi\alpha t^{2}}-\frac{3m^{2}}{32\pi\alpha t^{1+b}}+\frac{b^{2}-3b-9}{at^{2}}-\frac{3m^{2}}{at^{b}}-\frac{2\exp t^{(-b+2)}}{-b+3}-\frac{b^{2}-3b-2bt}{-b+3}-\frac{b^{2}-3b-2bt}{2t^{2}(-b+3)}-\frac{2\exp t^{(-b+2)}(b-3t)}{2t^{2}(-b+3)}+\frac{3m^{2}}{8\pi\alpha t^{1+b}}\right\}$$

$$(47)$$

3.5 Case II: Zeldovich Universe

 $\gamma = 1$ In this case, the Hubble parameter, Expansion scalar, deceleration parameter, anisotropic parameter, shear scalar are given by

$$H = \frac{b}{3t}$$
(49)

$$\theta = \frac{b}{t}$$
(50)

$$q = \frac{d}{dt}\frac{b}{3t} - 1$$
(51)

$$q = -\frac{b}{3t^2} - 1$$
(52)

$$q = 1 - \frac{b^2}{3t^2} - 1$$

$$\sigma^2 = \frac{1}{2} \frac{b^2}{a^2 t^2}$$
(53)

$$A_m = \frac{1}{a^2} \frac{1}{b^2 t^2}$$
(54)

$$\rho_m = \frac{2b^2 - 3b - 2bt}{6\pi a t^3} + \frac{4exp t^{-b+2}(b-3t)}{12\pi a t^2} - \frac{3m^2}{4\pi a t^{1+b}}$$
(55)

$$\rho_{r} = \frac{b^{2} - 3b - 9}{at^{2}} - \frac{3m^{2}}{at^{b}} - \frac{2exp \ t^{(-b+2)}}{-b+3} - \frac{b^{2} - 3b - 2bt}{3 \pi at^{3}} - \frac{2exp \ t^{(-b+2)} \ (b-3t)}{t^{2}(-b+3)} + \frac{3m^{2}}{2\pi a at^{1+b}}$$

$$(56)$$

$$\Omega = \Omega_{m} + \Omega_{r} = \frac{18t^{2}}{b^{2}} \{ \frac{b^{2} - 3b - 2bt}{6\pi at^{3}} + \frac{2 \ expt^{(-b+2)}(b-3t)}{12\pi at^{2}} - \frac{3m^{2}}{8\pi a \ t^{1+b}} + \frac{b^{2} - 3b - 9}{at^{2}} - \frac{3m^{2}}{at^{b}} - \frac{2 \ expt^{(-b+2)}}{-b+3} - \frac{b^{2} - 3b - 2bt}{t^{2}(-b+3)} - \frac{3m^{2}}{2\pi a \ t^{1+b}} \}$$

$$(57)$$

e-ISSN No. 2394-8426 Monthly Issue MAY-2025 Issue-V, Volume-XIII

https://doi.org/10.69758/GIMRJ/2505I5VXIIIP0058

Conclusion:

The constructed cosmological model is singularity free also we have discussed two different cases of the Universe. Case I for dust model $\gamma = 0$ we observe that in this case H is constant for $t \to \infty$ and deceleration parameter indicates $q = -\frac{b}{3t^2} - 1$ indicates that expansion of universe is accelerated. Averages mean parameter $A_{m \ is}$ also non zero constant which show that model is anisotropic. Also the energy density for matter radiation vanishes for t tends to infinity and corresponding density parameters are Vanishes. In case II we obtain Zeldovich universe for $\gamma = 1$. For this universe also Hubble parameter and expansion scalar are positive value. The deceleration parameter A_m show that the model is anisotropic.

The energy density and radiation density is positive value. $\frac{\sigma^2}{\theta^2} = \frac{\frac{1}{2a^2t^2}}{\frac{b}{t}} = 0$ in all cases. Thus in all cases the

model is anisotropic and accelerating which can be thought as of realistic model of the universe.

REFERENCES

[1]Brans C, DickeRH. Mach's Principle and a Relativistic Theory of Gravitation. Physical Review. 1961;124(3):925–35.DOI: 10.1103/physrev.124.925.

[2]Nordtvedt K Jr. Post-Newtonian Metric for a General Class of Scalar-Tensor Gravitational Theories and Observational Consequences. The Astrophysical Journal. 1970; 161:1059.DOI: 10.1086/150607.

[3]Sáez D, BallesterVJ. A simple coupling with cosmological implications. Physics Letters A. 1986;113(9):467–70.DOI: 10.1016/0375-9601(86)90121-0

[4]Canuto V, Adams PJ, Hsieh S-H, Tsiang E. Scale-covariant theory of gravitation and astrophysical applications. Physical Review D. 1977;16(6):1643–63. DOI: 10.1103/physrevd.16.1643

[5]Beesham A. Bianchi type-I cosmological model in the scale covariant theory. Classical and Quantum Gravity. 1986;3(3):481–

6.DOI: 10.1088/0264-9381/3/3/021[6]VenkateswarluR, The AfricanRevPhys. 2013;8:35.

[7]Reddy DRK, Patrudu BM, Venkateswarlu R. Exact bianchi type-II, VIII and IX cosmological models in scale-covariant theory of gravitation. Astrophysics and Space Science. 1993; 204(1):155–60.DOI: 10.1007/bf00658101.

[8]Ram S, Verma MK, ZeyauddinM. Spatially Homogeneous Bianchi Type V Cosmological Model in the Scale-Covariant Theory of Gravitation.Chinese Physics Letters. 2009;26(8):089802.DOI: 10.1088/0256-307x/26/8/089802.

[9]Zeyauddin M, Saha B. Bianchi type VI cosmological models: a Scale-Covariant study. Astrophysics and Space Science. 2012;343(1):445–50.DOI: 10.1007/s10509-012-1228-x

[10]Katore SD, Sancheti MM, Hatkar SP. Magnetized anisotropic dark energy cosmological models in scale covariant theory of gravitation. International Journal of Modern Physics D. 2014;23(07):1450065.DOI: 10.1142/s0218271814500655.

[11]FabbriR,GuidiI, InfrarassoG.Proc. second Marcel Grossmann meeting on general relativity, Ameterdam.NorthHallond. 1992:889.

[12]AmirhashchiH, Pradhan A, Zainuddin H. An Interacting and Non-interacting Two-Fluid Dark Energy Models in FRW Universe with Time Dependent Deceleration Parameter. Int J Theor Phys. 2011;50(11):3529–43.DOI: 10.1007/s10773-011-0861-4.

e-ISSN No. 2394-8426 Monthly Issue MAY-2025

Issue-V, Volume-XIII

https://doi.org/10.69758/GIMRJ/250515VXIIIP0058

[13]Khalatnikov IM, KamenshchikAYu, Starobinsky AA. Quasi-Isotropic Expansion for a Two-Fluid Cosmological Model Containing Radiation and String Gas. Journal of Experimental and Theoretical Physics. 2019;129(4):486–94.DOI: 10.1134/s1063776119100066.

[14]ColeyAA, DunnK.Two-fluid Bianchi VI(0) spacetimes. AstrophysJ.1990;348:26.

[15]Pant DN, Oli S. Two-Fluid Bianchi Type II Cosmological Models. Astrophysics and Space Science. 2002;281(3):623–31.DOI: 10.1023/a:1015898219523.

[16]Reddy DRK, Anitha S, Umadevi S. Five dimensional minimally interacting holographic dark energy model in Brans–Dicke theory of gravitation. Astrophysics and Space Science. 2016;361(11).DOI: 10.1007/s10509-016-2938-2.

[17]Vishwakarma RG. A study of angular size-redshift relation for models in which Λ decays as the energy density. Classical and Quantum Gravity. 2000;17(18):3833–42.DOI: 10.1088/0264-9381/17/18/317.

[18]Oli S. Two-fluid cosmological models in a Bianchi type I space-times. Astrophysics and Space Science. 2008;314(1-3):95–103.DOI: 10.1007/s10509-008-9743-5.

[19]LetelierPS. Anisotropic fluids with two-perfect-fluid components. Physical Review D. 1980;22(4):807–13.DOI: 10.1103/physrevd.22.807.

[20]Bayin SŞ. Anisotropic fluid spheres in general relativity. Physical Review D. 1982;26(6):1262–74.DOI: 10.1103/physrevd.26.1262.

[21]Adhav KS, Borikar SM, Desale MS, Raut RB, Two-Fluid Cosmological Models in Bianchi Type-III Space-Time Elect. J TheorPhys 2011;25,319-26.

[22]Berman MS. A special law of variation for Hubble's parameter.IlNuovoCimento B Series 11. 1983;74(2):182–6.DOI: 10.1007/bf02721676.

[23]Singh CP, Kumar S. Bianchi type-ii cosmological models with constant deceleration parameter.. International Journal of Modern Physics D. 2006;15(03):419–38.DOI: 10.1142/s0218271806007754

[24]Singh JK, Sharma NK. Bianchi Type-II Dark Energy Model in f(R,T) Gravity. Int J Theor Phys. 2013;53(4):1424–33.DOI: 10.1007/s10773-013-1939-y.

[25]LevittLS. NuovoCimento. Lett., 1980; 29, 23.

[26]BeeshamA. Variable-G cosmology and creation.International Journal of Theoretical Physics. 1986;25(12):1295–8.DOI: 10.1007/bf00670415.

[27]Sisteró RF. Cosmology with G and A coupling scalars. General Relativity and Gravitation. 1991;23(11):1265–78.DOI: 10.1007/bf00756848.

[28]Amendola L, Campos GC, Rosenfeld R. Consequences of dark matter-dark energy interaction on cosmological parameters derived from typeIa supernova data. Physical Review D. 2007;75(8).DOI: 10.1103/physrevd.75.083506.

v[29]Guo Z-K, Ohta N, TsujikawaS. Probing the coupling between dark components of the universe. Physical Review D. 2007;76(2).DOI: 10.1103/physrevd.76.023508[30]AdhavKS, DawandeMV, BorikarSM, BulJPhys2011;38:371-79.