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Abstract :- In this paper the comparative analysis of the four algorithms elucidates distinct 

convergence behaviours and performance attributes is provided. Algorithms I and II 

demonstrates an accelerated convergence rate, rendering them advantageous in scenarios 

prioritizing expeditious optimization. Algorithm III, while exhibiting prompt stabilization, may 

not attain the minimal objective function value. Algorithm IV, offering a compromise between 

convergence speed and the final objective function value, is a viable option when a balanced 

approach is deemed acceptable.  
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1. Introduction 

In the realm of optimization, the Nonlinear Inequality Constrained Optimization Problem, 

denoted as ���, emerges as a focal point in addressing real-world challenges. Formally expressed 

as: ��� minimize 	�
�
⬚ subject to ���
� � 0∀1 � � � �. 

Here, 	 and �� represent real-valued functions defined across the continuum of real numbers. The 

feasible region, denoted as � � �
 ∈ ℝ" ∣ ���
� � 0$, encapsulates the constraints imposed on 

the optimization. Our pursuit is to minimize the objective function 	�
� while navigating 

through the intricacies of these constraints. In this pursuit, the functions 	 and ��, assumed to be 

both second-order differentiable and continuous, underpin the foundation of numerous problems 

spanning engineering, management, and network domains. 

This chapter embarks on a journey to conduct a comprehensive comparative analysis of various 

smoothing techniques tailored for nonlinear inequality-constrained optimization. As we delve 

into these techniques, our objective is to unravel the nuanced strengths and limitations each 

method presents. By shedding light on their applicability, convergence properties, and overall 

performance, this study endeavours to provide valuable insights for researchers and practitioners 

grappling with scenarios where traditional differentiability assumptions fall short. 

Various methods have been developed to address such non-linear inequality unconstrained 

optimization problems. One prevalent approach is the utilization of penalty function methods, 

which involves transforming the unconstrained optimization problem into a set of constrained 

optimization problems (COPs). This transformation enables the application of classical gradient 
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methods. The seminal work by Zangwill [1] in 1967 introduced the classical %1 penalty function, 

represented by 

&1�
,(� � 	�
� ) ( * ⬚
+

��1
max.���
�,0/ 

However, it's important to note that this %1 penalty function, while precise, lacks smoothness, 

posing challenges for classical optimization methods such as Newton and gradient methods. 

Another well-known penalty function, the %2 penalty function, is presented as 

&�
, (� � 	�
� ) ( * ⬚
1

�23
4max����
�,0$56 

Unlike the %1 penalty, this function is smooth but not exact. 

In 2003, Yang and Huang [2] introduced a novel penalty function known as the 7-th power 

penalty function, represented by &7�
,8� � 9	�
�7 ) 8∑��1+ max.���
�,0/7;
17
. This function 

becomes the %1 exact penalty function for 7 � 1 and is smooth for 7 < 1 but non-differentiable 

for 0 = 7 � 1. 

A large number of scholars have come to the conclusion that the exact penalty function 

algorithms must have an increase in the exact penalty factors to locate a more optimal solution, 

and these functions cannot be differentiated [1, 3,4,5,65. 
The presence of smooth penalty functions is typically preferred in optimization problem solving 

due to the inherent lack of smoothness in exact penalty functions. Consequently, various 

innovative strategies have emerged in the field of exact penalty functions as discussed in 

47,8,9,10,115. The SPFM technique has been widely studied and introduced by Fiaccio and 

McCormick [7] as a general approach. 

This chapter focuses on the comparative analysis of these penalty functions and introduces a 

novel smoothing technique for the %1 exact penalty function, rendering it second-order 

differentiable. The smooth penalty function EF�G� is presented, and its application in obtaining a 

second-order differentiable approximation of the traditional %1 penalty function is explored. The 

subsequent sections delve into the connection between the solutions of the smooth penalty 

function and the original inequality constrained optimization problem, present an algorithm based 

on the smooth penalty function for solving the constrained optimization problem, and conclude 

by assessing the practicality of the proposed technique through numerical examples. 

2. A Second Ordered Smooth Penalty Function  

In first case, let us consider the real valued function E�G� which is given below 

E�G� � H0 G � 0G G I 0 

It is straightforward to indicate that E�G� is a continuous real-valued function, but it cannot be 

differentiated. Therefore, the optimal penalty problem �1 is given by 



Gurukul International Multidisciplinary 
Research Journal (GIMRJ)with 

International Impact Factor 8.249 

Peer Reviewed Journal 
 

https://doi.org/10.69758/GIMRJ/2410III02V12P0014 

 

 

Page 72 Quarterly Journal         Peer Reviewed Journal            ISSN No. 2394-8426 
Indexed Journal   Referred Journal http://www.gurukuljournal.com/ 

e-ISSN No. 2394-8426 

Special Issue on  

Scientific Research 

Issue–III(II), Volume–XII 

�1min&1�
,8� � 	�
� ) 8 * ⬚
+

��1
EJ���
�Ks.t.
 ∈ ℝ�

 

For 8 < 0, to smooth above function, we define: 

EF�G� �
⎩ǡ
�

ǡ

ǟ
0 G = 0G3

3F2 0 � G = F
G M 2F3 G I F

 

Here F is the smoothing parameter. 

Let us consider E: ℝ → ℝ given as: 

E�G� � P 0 G � 0
G6Q G I 0 

The function E�G� is exact but not smooth. So to make it smooth write the optimization problem 

for it as: 

��3RS �
� � 	�
� ) T * ⬚
1

�23
E����
�� 

the associated smooth penalty optimization problem reduces as: 

minimize RS �
�s.t.
 ∈ ℝ" 

From the definition in (3), clearly, the function E�G� on ℝ1
 does not fall into the class of 

continuous functions. We propose the introduction of a new function that possesses the ideal 

characteristics of continuity and differentiability in 

 
FIGURE 1: The behaviour of EF�G� at F � 0.02 and E�G� 
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order to avoid this limitation. Specifically, to find a function that possesses a continuous first-

order derivative is our main objective. To fulfil these criteria, we define the smoothing function 

as follows: 

EF�G� �
⎩ǡ
�

ǡ

ǟ
0, if G � 0

G4 3⁄
2F2 3⁄ , if G < 0andG � F

G2 3⁄ M F2 3⁄
2 , if G < F

 

We prove that above EF�G� is continuously differentiable and its derivative is given by: 

EF′ �G� �
⎩ǡ
�

ǡ

ǟ
0 G � 02G1 3⁄

3F2 3⁄ 0 � G � F
2

3G1 3⁄ G I F
 

 
FIGURE 2: The behaviour of EF�G� at F � 0.1 and E�G� 

3. Some Propositions 

Proposition 1. For any F < 0, EY�G� is 2nd-order continuously differentiable function on ℝ, 

where 

EF′ �G� �
⎩�
ǟ

0 G = 0G2
F2 0 � G = F
1 G I F

 

Now corresponding to the penalty function EF�G�, the penalty optimization problem is presented 

by following expression 

&�
, 8, F� � 	�
� ) 8 * ⬚
1

�23
EY����
�� 

where 	 and �� 's �� � 1,2, … , �� are assumed to be 2nd order continuously differentiable 

functions, so &�
, 8, F� is 2nd order differentiable function which is also continuous on ℝ�
. 

Thus, the original optimization problem reduces to the form: 
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���3�min&�
, 8, F�s.t.
 ∈ ℝ" . 
We examine the correlation in ��3� and ���3�. 

Let RT,F�
� � 	�
� ) T∑��1+ EFJ���
�K 

This smooth penalty optimization problem is written as: 

minRS,Y�
�so that
 ∈ ℝ" 

Proposition 2. Let 
 ∈ &\, and F < 0, in this case we prove that 

0 � RS �
� M RS,Y�
� � 1
2 +TF6Q 

Proposition 3. For F < 0 and 
 ∈ ℝ", 

0 � &3�
, 8� M &�
, 8, F� � 2+8F
3  

From above proposition, it is very much clear that F plays an important role to control the gap 

between &�
, 8, F� and &1�
,8� as well as between RT�
� and RT,F�
�. Moreover, it directly 

leads to the following result: 

Proposition 4. Let F] be the sequence of positive real numbers which converges to zero and 
] be 

the solution to the optimization problem min
∈ℝ�&J
,8, F]K for given penalty parameter 8 < 0. 

Also let 
′ be an accumulation point of sequence 
]. Then 
′ is an optimal solution" for �2. 

Similarly, we have the following result for second smooth penalty function. 

Proposition 5. Consider the sequence positive numbers ^F_  ̀such that it converges to zero as ] 

tends to infinity. Also suppose that for minimization problem min
∈&0RT,7�
�. Then 

min
∈&0RT�
� has the optimal solution 
‾ , where 
‾  is the limit point of sequence ^
_ .̀ 

4. Some Definitions 

Definition 1 A point 
 ∈ �\ is considered to be F-approximate optimal solution to ��� if it 

meets the following conditions 

|	∗ M 	�
�| � F 

where 	∗
 denotes ��� 's optimal objective value. 

Definition 2 A point 
F ∈ ℝ�
 is said to be F-feasible to ��� when it meets the ���
F� � F for all 

� � 1,2, … , +. 

5. Algorithms 

The algorithm on the basis of smoothed penalty problem given in ��3� is given below. 

Algorithm I 

Step 1 Choose an initial point labeled as 
0. Set a stopping tolerance represented by F < 0 which 

is a small positive value indicating the desired level of accuracy for the solution. Assign positive 

values for F0 and T0. Select two additional values: d, which should be a decimal between 0 and 1 

, and e which should be greater than 1 . Start the 

iteration with initial value ] � 0 and follow the next step. 
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Step 2 Utilize the current point 
] (obtained from the previous step) as starting solution. Solve 

min
∈f∗RT] ,F]�
� to get the next solution 
]∗. The algorithm's subsequent steps or iterations can 

be performed after 
]∗ has been achieved. 

Step 3 If we get the desired F-feasible solution as 
]∗, in that case, the solution is close to optimal. 

Otherwise, write 
])1 � 
]∗ with F])1 � dF] and T])1 � eT], then follow the second step with 

] � ] ) 1. 

Now, on the basis of smoothed penalty problem that was shown in���3�, we present a proposed 

technique for second smooth penalty function for solving the constrained optimization problem. 

The functionality of method is represented as follow: 

Algorithm II 

Step 1: First choose the initial guess of basic feasible solution 
0. Take F < 0, F\ < 0, 8\ <
0,0 = g = 1. The multiplier value for the penalty parameter is taken to be greater than 1 denoted 

by N. Supoose ] � 0 and then go to the next step. 

Step 2: At next step, we arrive at 
] and by taking 
] as initial point again, evaluate 

min
∈ℝ�hi
, 8], F]j. Let 
])1 considered to be the optimal solution attained. 

Step 3: If 
])1 is supposed to be F-feasible to ���, then stop the simulation. Otherwise, we can 

consider " 8])1 � e8_ , F_k3 � gF_ and ] � ] ) 1 ", then follow the procedure as given in step 2 

. 

Numerical Examples 

Now, we will solve some constrained optimization problems with Algorithm I and II on 

Mathematica. To compare the efficiency of Algorithm I and II with those both of Algorithm III 

based on the %1 exact penalty function and of Algorithm IV based on the %2 penalty function, 

Algorithms III and IV are listed as follows: 

Algorithm III 

Step 1: Choose 
0, F < 0, 80 < 0, e < 1. Let ] � 0 and go to Step 2 . 

Step 2: Using 
] as the initial point to solve min
∈f�h1 i
, 8]j � 	�
� ) 8]∑�∈lmax.���
�,0/. 
Let 
])1 be the optimal solution obtained. 

Step 3: If 
])1 is F-feasible to (P), then stop. Otherwise, let 8])1 � e8] and ] � ] ) 1, then go 

to Step 2 . 

Algorithm IV 

Step 1: Choose 
0, F < 0, 80 < 0, e < 1. Let ] � 0 and go to Step 2 . 

Step 2: Using 
] as the initial point to solve min
∈f�h2 i
, 8]j � 	�
� )
8]∑�∈lmmax.���
�,0/n2

. Let 
])1 be the optimal solution obtained. 

Step 3: If 
])1 is F-feasible to (P), then stop. Otherwise, let 8])1 � e8] and ] � ] ) 1, then go 

to Step 2 . 
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We resolve some numerical instances with the help of suggested algorithm using Mathematica 

software. 

6. Examples 

6.1 Example 1 The Rosen-Suzen problem "in [12] 

⬚ min	�
� � 
36 ) 
66 ) 2
Q6 ) 
o6 M 5
3 M 5
6 M 21
Q ) 7
o⬚ s.t.�3�
� � 2
36 ) 
66 ) 
Q6 ) 2
3 ) 
o M 5 � 0
⬚ �6�
� � 
36 ) 
66 ) 
Q6 ) 
ok
3 M 
6 ) 
Q M 
o M 8 � 0

�Q�
� � 
36 ) 2
66 ) 
Q6 ) 2
o6 M 
3 M 
o M 10 � 0"
 

We solve this equation using Mathematica software. Let 
0 � �0,0,0,0� We take initial value of 

penalty parameter 80 � 10, F0 � 0.3, d � 0.1 and e � 3 for Algorithm I and 
0 � �0,0,0,0�, 

initial value of penalty parameter 80 � 3, F0 � 0.2, d � 0.1 and e � 3 for Algorithm II. 

TABLE 1: Numerical results using Algorithm I 

No. iter. 

K 

7)1 87 F7 	�
qk3� 

1 �0.175210,0.839826,2.025449, M0.977656� 10 0.3 -44.4496 

2 �0.169887,0.835779,2.009614, M0.965623� 30 0.03 -44.2340 

3 �0.169578,0.835545,2.008691, M0.964919� 90 0.003 -44.2338 

4 �0.169561,0.835533,2.008630, M0.964878� 270 0.0003 -44.2338 

 

 

TABLE 2: Numerical results using Algorithm II 

No. iter. K 
7)1 T7 F7 	�
qk3� 

1 �0.169255,0.834042,2.012210, M0.972317� 3 0.2 -44.2534 

2 �0.169480,0.835149,2.00954, M0.966767� 9 0.02 -44.2339 

3 �0.169559,0.835532,2.00863, M0.964877� 27 0.002 -44.2338 

 

 

 

 

TABLE 3: Numerical results using Algorithm III 

No. iter. K 
7)1 T7 	�
qk3� 
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1 �0.339654,0.677748,2.240736, M1.231420� 1 -48.629509 

3 �0.171993,0.831486,2.009344, M0.963467� 4 -44.233741 

 

 

TABLE 4: Numerical results using Algorithm IV 

No. iter. 

K 

7)1 T7 	�
qk3� 

1 ��0.339654,0.677748,2.240736, M1.231420� 1 -48.629509 

23 �0.169555,0.835503,2.008651, M0.964856 4194304 -44.233837 

 

 

6.2 Example 2 Consider the following example given in [13] 

⬚ min	�
� � 1000 M 
36 M 2
66 M 
Q6 M 
3
6 M 
3
Q⬚ s.t.�3�
� � 
36 ) 
66 ) 
Q6 M 25 � 0
⬚ �6�
� � �
3 M 5�6 ) �
6 M 5�6 ) �
Q M 5�6 M 25 � 0

 

We take initial point as 
0 � �0,0,0� with 80 � 10, the value of e � 10, F\ � 0.1, g � 0.01 

and F � 10rs. The calculations using Mathematica are given in table 5, 6, 7 and 8. 

TABLE 5: Numerical results using Algorithm I 

K 
7)1 87 	�
qk3� 

1 �2.510168,4.227381,0.967761� 10 944.097939 

2 �2.501018,4.221964,0.964756� 100 944.203874 

3 �2.500101,4.221383,0.964623� 1000 944.214474 

4 �2.500010,4.221324,0.964610� 10000 944.215534 

 

 

 

TABLE 6: Numerical results using Algorithm II 

K 
7)1 87 	�
qk3� 

1 �2.504965,4.225815,0.966155� 10 944.070969 

2 �2.500013,4.221979,0.961797� 100 944.215173 
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3 �2.500000,4.221953,0.961829� 1000 944.215662 

4 �2.500000,4.221953,0.961829� 10000 944.215661 

 

 

TABLE 7: Numerical results using Algorithm III 

K 
7)1 87 	�
qk3� 

1 �2.506435,3.672177,2.301453� 10 946.478819 

2 �2.500000,3.685055,2.273845� 100 946.523123 

 

 

TABLE 8: Numerical results using Algorithm IV 

k 
7)1 87 	�
qk3� 

1 �2.510169,4.227378,0.967778� 10 943.980275 

7 �2.500000,4.221318,0.964609� 10000000 944.215652 

 

 

6.3 Example 3 Consider the following problem given in [14] 

⬚ min	�
, v� � M
 M v
⬚ s.t.�3�
, v� � v M 2
o ) 8
Q M 8
6 M 2 � 0
⬚ �6�
, v� � v M 4
o ) 32
Q M 88
6 ) 96
 M 36
⬚ 0 � 
⬚ 0 � 3⬚ 0 � 4.

 

 

TABLE 9: Numerical results using Algorithm I 

k 
7)1 87 	�
qk3� 

1 �2.072463,4.018562� 5 -6.091026 

2 �2.003826,4.002522� 15 -6.006348 

3 �2.000211,4.000148� 45 -6.000360 

 

 

TABLE 10: Numerical results using Algorithm II 
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k 
7)1 87 	�
qk3� 

1 �2.084564,4.198454� 5 -6.28302 

2 �2.033748,4.194743� 15 -6.22849 

3 �2.028747,4.003435� 45 -6.03218 

4 �2.000132,4.000153� 135 -6.00029 

 

 

In above example, we take the initial point 
0 � �0,0� with value of initial parameter 80 � 5 and 

multiplier e � 3. The value of F0 is taken as 0.1 and the value of multiplier g � 0.1. 

Algorithm I seems to converge relatively quickly, reaching a small F7. Algorithm II shows a 

similar trend with decreasing F7 and 	�
qk3� values with increasing iterations. Algorithm III and 

IV have comparably large iterations but reach comparable F7 and 	�
qk3� values. 

If prioritizing rapid convergence is imperative, Algorithms I and II emerge as more favourable 

options. In the event that stability is of paramount importance, it is noteworthy that Algorithm III 

demonstrates a rapid stabilization; 

TABLE 11: Numerical results using Algorithm III 

k 
7)1 87 	�
qk3� 

1 �2.348483,4.199243� 5 -6.54773 

2 �2.002342,4.010239� 500 -6.01258 

 

 

TABLE 12: Numerical results using Algorithm IV 

K 
7)1 87 	�
qk3� 

1 �2.647483,4.485243� 5 -7.13273 

7 �2.000394,4.002021� 500000 -6.00242 

 

 

however, it may not attain the minimal objective function value. Algorithm IV could be deemed 

suitable in cases where an acceptable compromise between convergence speed and the attainment 

of the ultimate objective function value is permissible. 

7. Conclusion 
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In summary, the comparative analysis of the four algorithms elucidates distinct convergence 

behaviours and performance attributes. Algorithms I and II demonstrate an accelerated 

convergence rate, rendering them advantageous in scenarios prioritizing expeditious 

optimization. Algorithm III, while exhibiting prompt stabilization, may not attain the minimal 

objective function value. Algorithm IV, offering a compromise between convergence speed and 

the final objective function value, is a viable option when a balanced approach is deemed 

acceptable. The selection of the most appropriate algorithm hinges upon the specific 

requirements and priorities inherent to the optimization problem. Additional considerations, 

including computational efficiency and robustness, play a pivotal role in making an informed 

decision tailored to the unique characteristics of the optimization task. 
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